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Sb70Se30/SiO2 multilayer thin films were applied to improve the thermal stability by RF magnetron sputtering on SiO2/Si (100)
substrates. ,e characteristics of Sb70Se30/SiO2 multilayer thin films were investigated in terms of crystallization temperature, ten
years of data retention, and energy bandgap. It is observed that the crystallization temperature, 10-year data retention, and
resistance of Sb70Se30/SiO2 multilayer composite thin films exhibited a higher value, suggesting that Sb70Se30/SiO2 multilayer
composite thin films have superior thermal stability. ,e AFMmeasurement suggests that the SbSe (1 nm)/SiO (9 nm) multilayer
thin films possess a smaller surface roughness (RMS� 0.23 nm). Besides, it was found that the phase-change time of SbSe
(1 nm)/SiO (9 nm) multilayer thin films was shorter than that of GST in the process of crystallization and amorphization.

1. Introduction

With the increase of portable electronic devices, people’s
demand for volatile memory has increased dramatically [1].
Flash is now the mainstream of the nonvolatile memory
market, but flash has several drawbacks such as its long
operation time, the high voltage required for writing oper-
ations, and the fact used to store charges cannot meet the law
of proportional reduction when it is very small [2–4]. Phase-
change memory due to read and write with fast speed, high-
density storage capacity, and compatible with complementary
metal-oxide-semiconductor (CMOS), which regarded as the
most promising alternative flash memory, becomes the
mainstream of the next generation of nonvolatile storage
technology [5, 6]. In order to solve the problems of large
operation current and thermal interference, the whole de-
velopment trend of PCM is in the three-dimensional direction
to the nanometer scale. ,e sulfur compound semiconductor
is a key portion of the phase-change memory currently, and
its performance directly determines the performance of the
phase-change memory [7, 8].

Until recently, Ge2Sb2Te5 (GST) has been attractedmuch
attention in PCM research due to its relatively good per-
formance. However, Ge2Sb2Te5 has some problems such as
low crystallization temperature (∼160°C) and poor data
retention (∼85°C for 10 years), which cannot meet the re-
quirements of high-density storage in the future data age
[9, 10]. To this end, various strategies such as doping and
compositing have been performed to improve the perfor-
mances of phase-change materials. In the case of nitrogen-
doped GST, nitrogen is located in the grain vacancies or
grain boundaries as a result of thermodynamic stability [11].
Nitrogen doping in Sb70Se30 film can raise its thermal sta-
bility, reducing the RESET current [12]. Additionally,
Superlattice-like (SLL) Si/Sb80Te20 films have been con-
firmed to have a rapid crystallization speed [13]. Besides,
previous studies [14–16] suggest that alternative multilayer
phase-change materials can increase reversible phase-
change speed and decrease the whole phase-change pro-
cess power consumption, which is due to the fact condition
that the advantages of different kinds of materials can be
complementary.
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In this study, Sb70Se30/SiO2 (SbSe/SiO) multilayer thin
�lms were fabricated by the radio frequency (RF) sputtering
method. �e thermal stability, crystallization characteristics,
and optical transition of SbSe/SiO phase-change material
were investigated in detail. �e investigations of resistance
versus temperature (R-T), X-ray di�raction (XRD), and
surface topography measurements were carried out.

2. Experimental Details

In this work, SbSe/SiO multilayer thin �lms with di�erent
thickness ratios and Sb70Se30 and SiO2 targets were deposited
on SiO2/Si (100) with a thickness of 0.5 cm substrates by the
radio frequency (RF) magnetron sputtering system at room
temperature. �e purity of Sb70Se30 and SiO2 targets was
99.9999%. Prior to the growth of thin �lms, the deposition
rates of SbSe and SiO single layers were predetermined. �e
total thickness of SbSe/SiO thin �lms was 50 nm, and the
periodicity was 5.�e thickness of each individual layer can be
designed by controlling the deposition time.�e SbSe and SiO
layers were deposited alternately to obtain the required
number of layers of SbSe/SiO. �e base pressure in the de-
position chamber was 2×10−4 Pa. All deposition processes
were carried out in Ar gas pressure of 0.4 Pa, the �ow of 30
SCCM, and the RF power of 30W. �e substrate holder was
rotated at an autorotation speed of 20 rpm to ensure the
uniformity of deposition.

�e amorphous-to-crystalline transition was investigated
by in situ temperature-dependent resistance (R-T) mea-
surement using a TP 95 temperature controller (Linkam
Scienti�c Instruments Ltd., Surrey, UK) at a heating rate of
10°C/min. �e size of each measured thin �lm is 1 cm× 1 cm.
�e electrode made up of Si3N4 is set up on the surface of the
sample with a diameter of 0.7μm, and the separation gap
between two electrodes is 5mm. �e activation energy (Ea)
and data retention temperature of ten years can be further
gained by measuring the isothermal crystallization curve. �e
bandgap was obtained by measuring the re�ectivity of thin
�lms in the range of 400–2500 nm by the NIR spectropho-
tometer (7100CRT, XINMAO, China). �e crystalline
structures of the �lms were analyzed by X-ray di�raction
(XRD, PANalytical, X’PERT Powder). �e incidence angle θ
ranges from 10° to 30°, and the di�raction patterns were taken
in the 2θ range from 20° to 60° using Cu Kα radiation with
a scanning step of 0.01°C/min.�e surface morphology of the
�lms was examined by atomic force microcopy (AFM,
FMNanoview 1000). A picosecond laser pump-probe system
was used to investigate the phase-change time between
amorphous and crystalline states, by measuring the re�ec-
tivity of the material. �e light source used for irradiating the
samples was a frequency-doubled model-locked neodymium
yttrium aluminum garnet laser operating at 532 nm wave-
length at a pulse duration of 30 ps.

3. Results and Discussion

�e resistance as a function of temperature (R-T) for SbSe/SiO
multilayer thin �lms with di�erent thickness ratios at a heating
rate of 10°C/min is shown in Figure 1. As can be seen, all thin

�lms �rst display high resistance values, which are considered
to be associated with semiconductor behavior. �e resistance
decreases sharply as the temperature reaches to a certain value
which is referred to as the crystallization temperature Tc [17].
Figure 1 illustrates that with the increasing thickness of the SiO
ratio, the Tc values of the SbSe/SiO thin �lms increase from
210°C to 228°C. �is suggests that SiO deposition inhibits the
crystallization and increases the crystallization temperature.
As is known, the higher Tc represents better thermal stability
[18]. �erefore, we can infer that SbSe/SiO multilayer thin
�lms improve the thermal stability. Good thermal stability of
the phase-change materials is bene�cial to the data retention
and the reliability of the PCM devices, which is of great
signi�cance in practical application. Besides, the resistances of
amorphous and crystallization states were observed to increase
with the thickness of the SiO2 layer, which is helpful for re-
ducing RESETcurrent according to the joule heating equation
[19]. �erefore, PCM devices based on SbSe/SiO multilayer
thin �lms will have lower power consumption.

�e plot of logarithm failure time versus 1/kBT, as shown
in Figure 2, �ts a linear Arrhenius relationship due to its
thermal activation nature. In our case, the �tted straight line
could be described as the following equation [20]:

t � τ0 exp
Ea

kBT
( ), (1)

where t, τ0, kB, and T are the failure time, a preexponential
factor depending on the thin �lm’s properties, the Boltzmann
constant, and the absolute temperature, respectively. �e
extrapolated �tting lines show that the temperature for
10-year data retention of SbSe, SbSe (5 nm)/SiO (5 nm), SbSe
(3 nm)/SiO (7 nm), and SbSe (1 nm)/SiO (9 nm) were 141°C,
160°C, 165°C, and 182°C, respectively. Comparing with SbSe
thin �lms, SbSe/SiO multilayer thin �lms display better
reliability of resistance state at higher temperature, which
can meet the demands of data-storage applications at higher
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Figure 1: R-T curves of SbSe and SbSe/SiO multilayer thin �lms at
a heating rate of 10°C/min.
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temperature. �e activation energy Ea for crystallization pro-
vides a good estimation of the archival life stability of an
amorphous phase-changematerial.Ea for SbSe, SbSe (5nm)/SiO
(5nm), SbSe (3nm)/SiO (7nm), and SbSe (1nm)/SiO (9nm)
multilayer thin �lms, evaluated by the slope of the �tted curves
presented in Figure 2, were 5.2, 6.0, 6.4, and 7.5 eV, respectively.
Higher Ea implies better reliability of the amorphous phase. As
shown in Figure 2, the 10-year data retention andEa of SbSe/SiO
multilayer �lms increase with the SiO thickness ratio, which
indicate that SbSe/SiOmultilayer �lm has the best reliability and
is more quali�ed for PCM application.

�e di�use re�ectivity spectra of SbSe thin �lm and
SbSe/SiO multilayer thin �lms were measured by NIR
spectrophotometry in the wavelength ranging from 400 to
2500 nm at room temperature [21].�e bandgap energy (Eg)
could be determined by extrapolating the absorption edge
onto the energy axis, as shown in Figure 3.�e conversion of
the re�ectivity to absorbance data is obtained by the
Kubelka–Munk function (K-M) [22]:

K

S
�
(1−R)2

2R
, (2)

where R is the re�ectivity, K is the absorption coeªcient,
and S is the scattering coeªcient. As shown in Figure 3, the
bandgap energy for SbSe, SbSe (5 nm)/SiO (5 nm), SbSe
(3 nm)/SiO (7 nm), and SbSe (1 nm)/SiO (9 nm) multilayer
thin �lms are 1.47, 1.53, 1.58, and 1.66 eV, respectively. With
the increase of SiO thickness, Eg of amorphous �lms spreads
more widely. In general, the carrier density inside the
semiconductors is proportional to exp(−Ea/2KT) [23], and
the increase of the bandgap will result in the reduction of
carriers, which makes a major contribution to the increase of
�lm resistivity. �us, the activation energy for crystallization
is increased, improving the stability of the amorphous phase.
�is �nding is in accordance with the results from Figure 1.

�e crystalline structure of SbSe and SbSe (1 nm) SiO
(9 nm) thin �lms was characterized by XRD. Figure 4 shows

the XRD patterns of SbSe and SbSe (1 nm) SiO (9 nm) thin
�lms annealed for 10 minutes at di�erent temperatures. �e
di�erent annealing temperatures correspond to di�erent
crystallization stages. As can be seen, there is no di�raction
peak in all the as-deposited thin �lms, implying that the �lms
have not crystallized at all and are still in the amorphous
structure [24, 25]. After annealing above crystallization
temperature Tc, multiple di�raction peaks are observed. �e
di�raction peak (211) belonging to Si appeared in SbSe and
SbSe (1 nm) SiO (9 nm) thin �lms, which is associated with
the SiO2/Si substrate. As presented in Figure 4, the dif-
fraction peak (012) belonging to Sb appears in SbSe and
SbSe/SiO thin �lms, which suggests that Sb is excessive
[4, 26]. From the XRD patterns of SbSe (1 nm) SiO (9 nm)
multilayer thin �lms, it can be inferred that the SiO exists as
the amorphous phase in all SbSe (1 nm) SiO (9 nm) mul-
tilayer thin �lms since no SiO di�raction peaks are observed
[27], implying that the phase transition does not occur in the
SiO layers. Due to the interface holding e�ect in the
SbSe/SiO multilayer thin �lms, the SiO layers will impede
the propagation of carriers and increase the resistance. �is
may suggest that SiO layers play an important role to im-
prove the crystallization temperature and thermal stability.
In general, the SbSe/SiO multilayer thin �lms have better
thermal stability than SbSe thin �lm, which will be bene�cial
to the reliability of the PCRAM.

Film surface roughness is of great signi�cance for the
device performance due to the electrode–�lm interface af-
fected by the induced stress during the phase-change process
[28, 29]. �e microstructures of the SbSe thin �lm and SbSe
(1 nm)/SiO (9 nm) multilayer thin �lms before and after
crystallization have been detected by AFM. �e SbSe thin
�lm and SbSe (1 nm)/SiO (9 nm) multilayer thin �lms were
annealed at 240°C for 10min. Figure 5 shows the AFM
images of as-deposited and annealed SbSe thin �lm and SbSe
(1 nm)/SiO (9 nm) multilayer thin �lms. �e surfaces of
amorphous SbSe thin �lm and SbSe (1 nm)/SiO (9 nm)
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Figure 3: �e Kubelka–Munk function of amorphous SbSe and
SbSe (1 nm) SiO (9 nm) multilayer thin �lms.

22 23 24 25 26 27 28 29 30
1/KT (eV)–1

E a
=

5.2
eV

E a
=

6.0
eV

E a
=

6.4
eV

E a
=

7.5
eV

SbSe
SbSe (5nm)-SiO (5nm)

SbSe (3nm)-SiO (7nm)
SbSe (1nm)-SiO (9nm)

10 years

Fa
ilu

re
 ti

m
e (

s)

182°C 165°C 160°C 141°C

101

102

100

108

107

106

105

104

103

Figure 2: Plots of failure times as a function of reciprocal tem-
perature of SbSe and SbSe/SiO multilayer thin �lms.

Advances in Materials Science and Engineering 3



multilayer thin �lms are smooth relatively, with the root-
mean-square (RMS) surface roughness of 0.33 and 0.23 nm,
respectively. After crystallization, the RMS of SbSe thin �lm
increases to 0.44 nm. By contrast, the annealed SbSe
(1 nm)/SiO (9 nm) multilayer thin �lm has a smaller RMS
(0.37 nm). Above points imply that the internal stress change
of SbSe (1 nm)/SiO (9 nm) multilayer thin �lm is much
smaller, which is helpful to the fatigue performance of phase-
change memory. �ese values of the RMS are lower than the
other phase-change �lms, such as Sb2–Te3 [30] and Ge10Sb90
[31], indicating well smooth surface for PCM devices.

In the phase change, the electrical resistivity changes are
accompanied by optical re�ectivity. In this study, the
switching speed of the phase-change materials was in-
vestigated by picosecond laser technology. Since the reset
operation needs more power and shorter time than the set
one in the resistance switching process of PCM devices, the
reset power and the set speed have been attracted more
attention [32]. �at is to say, the power consumption and
operation speed of PCM are mainly determined by the reset
and set processes, respectively. Figure 6 shows the nor-
malized re�ectivity evolution of the SbSe (1 nm)/SiO (9 nm)
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Figure 4: XRD patterns of thin �lms annealed at di�erent temperatures for 10min in Ar atmosphere: (a) SbSe and (b) SbSe (1 nm)
SiO (9 nm).
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multilayer thin �lm. In the picosecond laser test, the time of
0 is a reference for data recording, and it does not corre-
spond to the time of phase transition. What is concerned in
present study is the time interval from crystalline state to
amorphous state which appears as abrupt change in
re�ectivity. As can be seen from Figure 6(a), the re�ectivity
dropped, implying the transition from crystalline-to-
amorphous state. �e amorphization time was 1.60 ns and
0.96 ns, which corresponds to the irradiation �uences of
15.5mJ/cm2 and 23.8mJ/cm2, respectively. As shown in
Figure 6(b), the crystallization time was observed at 1.7 ns
under the irradiation �uence of 6.34mJ/cm2. It has been
reported that the crystallization time of GST is 23.1 ns [33].
�erefore, we can infer that the SbSe (1 nm)/SiO (9 nm)
multilayer thin �lm possesses the faster phase-change speed.

4. Conclusion

In summary, SbSe/SiO multilayer thin �lms were prepared
by the radio frequency (RF) sputtering method. Phase-
change behavior was studied by in situ temperature-
dependent resistance measurements. �e crystallization
temperature, activation energy, and 10-year data retention
temperature of the SbSe/SiO multilayer thin �lms were
proved to be larger than those of conventional SbSe thin
�lm, which indicates the SbSe/SiO multilayer thin �lms have
better thermal stability in comparison with SbSe thin �lm.
�e AFM measurement shows that the SbSe (1 nm)/SiO
(9 nm) multilayer thin �lms possess better surface roughness
(0.23 nm) than that of SbSe thin �lm. Meanwhile, the pi-
cosecond laser measurement suggests that the crystallization
time of SbSe (1 nm)/SiO (9 nm) multilayer thin �lms is
shorter than that of GST thin �lm. �e results indicate that

the SbSe/SiO multilayer thin �lms are a promising candidate
for high-reliability and low-consumption PCM device
applications.
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